1	Absence of Escherichia coli Phylogenetic Group B2 Strains
2	in Humans and Domesticated Animals from Jeonam Province, Korea
3	
4	Tatsuya Unno ¹ , Dukki Han ¹ , Jeonghwan Jang ¹ , Sun-Nim Lee ¹ , Gwangpyo Go ² , Ha
5	Young Choi ³ , Joon Ha Kim ¹ , Michael J. Sadowsky ⁴ , Hor-Gil Hur ^{1,*}
6	
7	¹ Department of Environmental Science and Engineering, Gwangju Institute of Science
8	and Technology, Gwangju, Korea, ² Department of Environmental Public Health, Seoul
9	National University, Yeoungeon-Dong, Jongro-Gu, Seoul, Korea, ³ Department of
10	Diagnostic Laboratory Medicine, Cheomdan General Hospital, Gwangsan-gu, Gwangju,
11	Korea, and ⁴ Department of Soil, Water and Climate and BioTechnology Institute,
12	University of Minnesota, St. Paul, Minnesota, USA.
13	
14	Running title: Phylogenetic group B2 E. coli absence in South Korea
15	
16	*Corresponding author: Department of Environmental Science and Engineering,
17	Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712,
18	Republic of Korea.
19	Tel.: +82-62-970-2437; fax: +82-62-970-2434,
20	E-mail address: <u>hghur@gist.ac.kr</u>

Abstract 21

22	Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli
23	strains isolated from the feces of 138 humans and 376 domesticated animals from
24	Jeonam Province, Korea, done using primers specific for the <i>chuA</i> and <i>yjaA</i> genes, and
25	an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E.
26	coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in
27	about 17% (8 of 48 isolates) from 24 wild geese feces and in 3% (3 of 96) isolates
28	obtained from the Yeongsan River in Jeonam Province, Korea. The distribution of E. coli
29	strain in phylogenetic groups A, B1, and D varied depending on the host examined and
30	there was no apparent seasonal variation in the distribution of strains in phylogenetic
31	group among the Yeongsan River isolates. The distribution of four virulence genes
32	(<i>eaeA</i> , <i>hlyA</i> , stx_1 , and stx_2) in isolates was also examined by using multiplex PCR.
33	Virulence genes were detected in about 5% (38 of 707) of the total unique strains
34	examined, with 24, 13, 13, and 9 strains containing $hlyA$, $eaeA$, stx_2 , and stx_1 , respectively.
35	The virulence genes were most frequently present in the phylogenetic group B1 strains
36	isolated from beef cattle. Taken together, results of these studies indicate that E. coli
37	strains in phylogenic group B2 were rarely found in humans and domesticated animals
38	in Jeonam Province, Korea and that the majority of strains containing virulence genes
39	belonged to phylogenic group B1 and were isolated from beef cattle. Results of this
40	study also suggest that the relationship between the presence and types of virulence genes
41	and phylogenetic groupings may differ among geographically-distinct <i>E. coli</i> populations.
42	
43	Key words: Escherichia coli, phylogenetic group, virulence genes, multiplex PCR,

Key words: Escherichia coli, phylogenetic group, virulence genes, multiplex PCR,

Korea 44

45 Introduction

46	Escherichia coli is a normal inhabitant of the lower intestinal tract of
47	warm-blooded animals and humans. While the majority of E. coli strains are
48	commensals, some are known to be pathogenic, causing intestinal and extra-intestinal
49	diseases, such as diarrhea and urinary tract infections (42). Phylogenetic studies done
50	using multilocus enzyme electrophoresis (MLEE) and 72 E. coli strains in the reference
51	ECOR collection showed that E. coli strains can be divided into four phylogenetic
52	groups (A, B1, B2, and D) (20, 41, 48). Recently, a potential fifth group (E) has also
53	been proposed (11). Since multiplex PCR was developed for analysis of phylogenetic
54	groups (6), a number of studies have analyzed a variety of E. coli strains for their
55	phylogenetic group association (10, 12, 17, 18, 23, 54). Duriez et al. (10) reported the
56	possible influence of geographic conditions, dietary factors, use of antibiotics, and/or
57	host genetic factors on the distribution of phylogenetic groups among 168 commensal E.
58	coli strains isolated from human stools from three geographically distinct populations in
59	France, Croatia, and Mali. Random amplified polymorphic DNA (RAPD) analysis of
60	the intraspecies distribution of E. coli in pregnant women and neonates indicated that
61	there was a correlation between the distribution of phylogenetic groups, RAPD groups,
62	and virulence factors (54). Moreover, based on comparisons of the distribution of E. coli
63	phylogenetic groups among humans of different sex and ages, it has been suggested that
64	E. coli genotypes are likely influenced by morphological, physiological, and dietary
65	differences (18). In addition, climate has also been proposed to influence the distribution
66	of strains within E. coli phylogenetic groups (12). There are now several reports
67	indicating that there is a potential relationship between E. coli phylogenetic groups, age,
68	and disease. For example, E. coli isolates belonging to phylogenetic group B2 have been

69	shown to predominate in infants with neonatal bacterial meningitis (27), and among
70	urinary tract and rectal isolates (55). Also, Nowrouzian et al. (39) and Moreno et al. (37)
71	reported that strains belonging to phylogenetic group B2 persisted among the intestinal
72	microflora of infants and were more likely to cause clinical symptoms.

73 Boyd and Hartl (2) reported that among the E. coli strains in the ECOR and the 74 diarrheagenic E. coli (DEC) collections, strains in phylogenetic group B2 carry the greatest number of virulence factors, followed by those in group D. Virulence factors 75 76 carried by group B2 strains are thought to contribute to their strong colonizing capacity, 77 a greater number of virulence genes have been detected in resident strains than in transient ones (38). Moreover, a mouse model of extraintestinal virulence showed that 78 79 phylogenetic group B2 strains killed mice at greater frequency and possessed more 80 virulence determinants than strains in other phylogenetic groups, suggesting a link between phylogeny and virulence genes in E. coli extraintestinal infection (45). In 81 82 contrast, Johnson and Kuskowski (25) suggested that a group B2 ancestral strain might 83 have simply acquired virulence genes by chance, and that these genes were vertically inherited by group members during clonal expansion. However, numerous studies 84 published to date suggest that there is a relationship between the genomic background 85 86 of phylogenetic group B2 and its association with virulence factors (12, 28, 34, 39, 45). 87 Both enteropathogenic (EPEC) and enterohemorrhagic (EHEC) E. coli are among the most important food-borne pathogens worldwide, often causing severe 88 89 gastrointestinal disease and fatal infections (13). While EPEC strains cause diarrhea, 90 and generally do not produce enterotoxin, they possess adherence factor which is controlled by the chromosomal gene, *eaeA*, encoding for intimin (8). Unlike the EPEC, 91

however, the EHEC typically contain the hlyA, stx_1 , and stx_2 virulence genes, encoding

- 4 -

93	for hemolysins, and Shiga-like type 1 and 2 toxins, respectively, and <i>eaeA</i> . The ability to
94	detect EHEC has been great facilitated by the use of multiplex PCR (13, 44, 53).
95	Several studies have shown that strains producing Shiga-like toxin 2 are more frequently
96	found in cases of hemolytic-uremic syndrome (HUS) than are those containing
97	Shiga-like toxin 1 (30, 43, 46, 49).
98	In the study reported here, we examined the distribution of phylogenetic groups
99	and the prevalence of virulence genes in 659 genotypically-unique E. coli strains
100	isolated from humans and domestic animals in Korea. In addition, we also tested 48 and
101	96 non-unique E. coli isolates from wild geese and the Yeongsan River, respectively for
102	phylogenetic distribution and virulence gene profiles. Here we report that contrary to
103	what has been previously reported in other parts of the world, no E. coli strains
104	belonging to phylogenetic group B2 were found in domesticated animals and in humans
105	from Jeonam Province, Korea. We also report that among the strains we examined,
106	virulence genes were mainly found in phylogenetic group B1 strains isolated from beef
107	cattle. Results of these studies may prove to be useful for the development of risk
108	management strategies to maintain public health.
109	
110	Materials and Methods
111	
112	Isolation of E. coli from humans and domesticated animals, Jeonam Province,
113	Korea
114	The sources of E. coli isolates, the number of isolates obtained from each
115	source, and the number of individual hosts sampled are listed in Table 1. The human
116	isolates were obtained from randomly-selected stool samples collected from healthy

	117	humans, and patient isolates were obtained in August 2008 from diarrheic patients at a
	118	hospital located in Jeonam Province, Korea. The data obtained from studies done with E.
	119	coli isolates from healthy humans and patients with diarrhea were analyzed separately.
rìni	120	The E. coli strains from domesticated animals were obtained in May 2006 by using
	121	fecal swabings from chickens, ducks, swine, and beef and dairy cattle collected at farms
Ó	122	in Jeonam Province, Korea. According to the Korea Food and Drug Administration
edd	123	(KFDA), antibiotics, such as tetracycline and penicillin, are regularly fed to
ahe	124	domesticated animals as feed additives (31). Wild geese isolates were obtained from
Je	125	fecal swabs collected in December 2007 in Jeonam Province, Korea, where migrating
nlìi	126	birds from Siberia rest every winter. Fecal swabs were stored in tubes on ice and
0	127	streaked within 6 hours of collection onto mFC agar (Difco, Detroit, MI) plates and
he	128	incubated at 44.5°C for 18 hours. Subsequently, three to five blue colonies appearing on
silc	129	mFC agar plates, per fecal sample, were further streaked for purification onto mFC agar
Du	130	plates and incubated overnight at 44.5°C. All isolates were verified to be E. coli as
ts I	131	previously described (9), and preserved at -70°C in LB freezing buffer (47).
	132	
VCC O	133	Isolation of <i>E. coli</i> from Yeongsan River, Jeonam Province, Korea
R	134	One site on the Yeongsan River, in Jeonam Province, Korea, was selected for
\geq	135	these studies. The site is a part of a tributary upstream from the Yeongsan River and
\triangleleft	136	surrounded by an urbanized area. Environmental <i>E. coli</i> strains were obtained using the
	137	membrane filtration technique according to U.S. Environmental Protection Agency
	138	(USEPA) method 1603 (52) Briefly 500 ml of surface water was sampled every 3
	100	(Colling) method 1005 (52). Diterly, 500 in of Surface water was sumpled every 5

- months from November 2007 to August 2008, and 100 ml, 10 ml, and 1 ml aliquots of 139
- surface water were individually filtered onto the surface of 0.45 µm pore-size 140

	142	(Difco, Detroit, MI) plates at 35°C for the first 2 hours, and then at 44.5°C for 16 hours.
	143	Red- or magenta-colored colonies were considered to be E. coli, and 24 randomly
rint	144	selected E. coli isolates were further streaked and incubated under the same condition
lo J	145	and used for subsequent species verification as described above.
0 To	146	
ed C	147	Horizontal fluorophore-enhanced rep-PCR DNA fingerprinting
ahe	148	Horizontal fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting of the
le (149	E. coli strains was done as described previously (29). Briefly, a loopful of bacteria from
nlìr	150	each strain was suspended in 0.05 N NaOH for 15 min at 95°C, and 1 µl was used as
0	151	template for PCR. The HFERP DNA fingerprinting was done using BOXA1R primers
hec	152	labeled with 6-FAM (6-carboxyfluorescein; Genotech Co. Ltd., Korea) as previously
lis	153	described (Johnson et al. 2004). All gel lanes contained Genescan-2500 ROX
Juc	154	(6-carboxy-X-rhodamine) (Applied Biosystems, Foster City, Calif.) as an internal size
S	155	standard. Gel images were captured using a Typhoon 9400 variable mode imager
	150	Malaavlar Draamias/Amarshar Disseisness, Summunals CA) using the fluoressees
Ö	150	(Molecular Dynamics/Amersham Biosciences, Sunnyvale, CA) using the Huorescence
	157	acquisition mode, with the following settings: green excitation laser, 610 BP 30 and 526
V	158	SP emission filters in the autolink mode, normal sensitivity, 200-µm/pixel scan
	159	resolution, +3-mm focal plane, and 800-V power. Scanned images of HFERP DNA
\triangleleft	160	fingerprints were processed using Image Quant (Molecular Dynamics/Amersham
	161	Biosciences, Sunnyvale, CA) and converted to 256 gray-scale tagged image file format
	162	images. Gel images were normalized and analyzed using Bionumerics v.5.0 software
	163	(Applied Maths, Sint-Martens-Latern, Belgium). Isolates which showed $\geq 92\%$

141

similarity from the same host were considered to be clones and removed from further 164

- 7 -

membranes (Advantec, Tokyo, Japan). Filtrates were incubated on modified mTEC agar

first 2 hours, and then at 44.5°C for 16 hours.

- 165 analyses (22, 29). The percentages of known-phylogenetic group strains assigned to their correct phylogenetic group were calculated by using Jackknife analysis with 166 maximum similarities. 167 168 Phylogenetic grouping and virulence gene identification 169 Only unique strains defined by the HFERP DNA fingerprint analysis were 170 subjected to analyses of phylogenetic groups and virulence gene identification. 171 172 Phylogenetic grouping was done as previously described by Clermont et al. (6). The 173 presence of the *ibeA* gene (invasion of brain epithelium) among Clermont phylogenetic group D strains having a *chuA*⁺, *yjaA*⁻, and TSPE4.C2⁺ genotype, was examined as 174175 previously described (14). The presence of virulence genes in E. coli strains was determined by using 176 177 multiplex PCR as previously described (44). Genomic DNA from strains was extracted 178 from cells as described above, diluted 10-fold in TE buffer, and 1 µl was used as 179 template for multiplex PCR using a Labcycler (SensoQuest, City, Germany) instrument. 180 **Results and Discussion** 181 182 **Phylogenetic grouping patterns** 183 184 A total of 1,585 E. coli isolates obtained from humans and domesticated animals were examined for their genetic relatedness by using HFERP DNA 185 186 fingerprinting as described by Johnson et al. (29). Strains sharing the same individual 187 host and having a genetic similarity \geq 92% in HFERP banding patterns were considered 188 to be clones (29) and were removed from further analyses. Based on this definition, 659
- AEM Accepts published online ahead of print

189	strains were considered to be unique and were subjected to further phylogenetic
190	grouping and virulence gene analyses. The E. coli isolates from migrating wild geese and
191	the Yeongsan River, however, were not subjected to HFERP analysis to remove clones.
192	The distribution of phylogenetic groups among genomically-unique E. coli
193	isolates obtained from humans and animals are summarized in Figure 1. The E. coli
194	strains from each host source showed a different distribution pattern of phylogenetic
195	groups. The E. coli strains from healthy humans were nearly equally represented in each
196	phylogenetic group, with 29, 34, and 36% of the strains in phylogenetic groups A, B1, and
197	D, respectively. There was a slightly greater number of isolates in phylogenetic group D
198	(42.9%) from human patients compared to the other phylogenetic groups, A (23.8%) and
199	B1 (33.3%). The majority of <i>E. coli</i> isolates from chickens were localized to phylogenetic
200	group A (55%), followed by strains in groups B1 (31.7%) and D (13.3%). A similar pattern
201	of distribution was also found among isolates from domesticated ducks, where about 63,
202	24, and 13% of strains were in phylogenetic groups A, B1, and D, respectively. In contrast,
203	<i>E. coli</i> isolates from beef cattle had the greatest percentage of group B1 strains (79.2%)
204	among all sources, and fewer isolates belonging to groups A (15.1%) and D (5.7%). A
205	similar trend was observed among E. coli isolates from dairy cattle, where 62% of the
206	isolates belonged to group B1, and a fewer percentage to groups A (32.0%) and D (5.7%).
207	Swine isolates showed unique phylogenetic group distribution, with an extremely low
208	percentage of group D (0.7%) strains, a relatively high percentage of group A (64.7%)
209	strains, and a moderate percentage of group B1 (34.5%) strains. The phylogenetic group
210	distribution of isolates from migrating wild geese isolates was the most distinctive, the
211	majority of isolates (60.4%) were in phylogenetic group B1, and 16.7, 14.6 and 8.3% of
212	the remaining isolates were in phylogenetic groups B2, A and D, respectively. It should

- 9 -

213	be noted that the phylogenetic group distribution pattern seen among E. coli isolates from
214	migrating wild geese was significantly different from that seen among isolates from
215	domesticated poultry chicken and duck, although the chicken and duck isolates showed
216	similar phylogenetic distribution patterns. Taken together, results of these studies indicate
217	that E. coli isolates belonging to phylogenetic group A were more frequently found in
218	chickens, ducks and swine, whereas those in phylogenetic group B1 were
219	predominantly found in isolates obtained from beef and dairy cattle. Results in Figure 1
220	also show that there was a different distribution pattern of <i>E. coli</i> phylogenetic group D
221	strains from humans and animals. While the majority of strains from healthy humans
222	(36%) and patients (42.9%) belonged to phylogenetic group D, strains in this
223	phylogenetic group generally comprised a small number of isolates obtained from all the
224	animals, including wild geese.
225	Among the 659 genomically-unique strains examined, 15 isolates (11, 2, 1, and 1
226	from healthy humans, ducks, chickens, and human patients, respectively) were found to
226 227	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a $chuA^+$, $yjaA^-$, and TSPE4.C2 ⁺
226 227 228	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a $chuA^+$, $yjaA^-$, and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and
226 227 228 229	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a $chuA^+$, $yjaA^-$, and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done
226 227 228 229 230	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a $chuA^+$, $yjaA^-$, and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a
226 227 228 229 230 231	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a <i>chu</i> A ⁺ , <i>yja</i> A ⁻ , and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a human patient, respectively) contained the <i>ibeA gene</i> . While this result suggested that
226 227 228 229 230 231 232	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a <i>chu</i> A ⁺ , <i>yja</i> A ⁻ , and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a human patient, respectively) contained the <i>ibeA gene</i> . While this result suggested that these strains may possibly belong to phylogenetic group B2 as redefined, by Gordon et al.
226 227 228 229 230 231 231 232 233	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a <i>chu</i> A ⁺ , <i>yja</i> A ⁻ , and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a human patient, respectively) contained the <i>ibeA gene</i> . While this result suggested that these strains may possibly belong to phylogenetic group B2 as redefined , by Gordon et al. (16), we propose to assign these 5 strains to phylogenetic group D until the method
226 227 228 229 230 231 232 232 233 233	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a <i>chu</i> A ⁺ , <i>yja</i> A ⁻ , and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a human patient, respectively) contained the <i>ibeA gene</i> . While this result suggested that these strains may possibly belong to phylogenetic group B2 as redefined , by Gordon et al. (16), we propose to assign these 5 strains to phylogenetic group D until the method proposed by Gordon et al. is evaluated by others using a larger number of
226 227 228 229 230 231 232 233 233 234 235	from healthy humans, ducks, chickens, and human patients, respectively) were found to be members of Clermont phylogenetic group D and had a <i>chu</i> A ⁺ , <i>yja</i> A ⁻ , and TSPE4.C2 ⁺ genotype. Recently, Gordon et al. (15) reported that strains having this genotype and contain the <i>ibeA</i> gene are likely members of phylogenetic group B2. PCR analyses done here indicated that 5 of the 15 isolates (3, 1, and 1 from healthy humans, a chicken, and a human patient, respectively) contained the <i>ibeA gene</i> . While this result suggested that these strains may possibly belong to phylogenetic group B2 as redefined , by Gordon et al. (16), we propose to assign these 5 strains to phylogenetic group D until the method proposed by Gordon et al. is evaluated by others using a larger number of geographically-diverse isolates and becomes a more established method for the

237	In the study reported here, no E. coli Clermont phylogenetic group B2 strains,
238	using the classical, excepted, definition, were found among the isolates we obtained
239	from humans or domesticated animals in Korea (Figure 1). This is not likely a
240	methodological issue as the multiplex (triplex) PCR method used in this study was
241	previously shown to correctly assign 95% of strains to phylogenetic groups B1 and B2,
242	when compared to MLST (16). Moreover, since phylogenetic group B2 strains were
243	identified among the river water isolates and migrating geese isolates examined, this
244	indicates that the methods used was sufficiently robust to detect strains in the group.
245	Previously, Escobar-Páramo et al. (12) reported that the prevalence of phylogenetic
246	group B2 isolates among individuals in temperate regions of mainland France,
247	Michigan, and Tokyo was greater than that found among people in tropical populations
248	from Bògotá, Cotonou, and French Guyana. In contrast, our data shows that the
249	phylogenetic group distribution for human isolates from Jeonam Province, Korea was
250	nearly equally divided among phylogenetic groups A (30%), B1 (34%), and D (36.2%).
251	Interestingly, it was also previously reported that E. coli strains from humans in Tokyo
252	were predominantly in phylogenetic group B2, and no B1 strains were present (40). The
253	different phylogenetic group distribution among E. coli strains from Japan and Korea may
254	be due to differences in dietary habits. Moreover, distributional differences among
255	phylogenetic groups of human E. coli isolates are not static and were shown to change
256	in response to geographic shifts in populations, which typically result in subsequent
257	alterations to diet (49). For example, shifts in E. coli phylogenetic group were found
258	among 25 humans who expatriated from metropolitan France to French Guyana (50).
259	This data suggests that there is a strong environmental influence on the phylogenetic
260	group distribution of intestinal E. coli isolates in humans.

- 11 -

261	The phylogenetic distribution of human E. coli isolates may also be impacted by
262	the use of antibiotics. It was previously reported that E. coli strains belonging to
263	phylogenetic group B2 were less likely to be resistant to antibiotics than non-B2 group
264	strains (24, 51). Skurnik et al. (51) reported that only 3.7% of group B2 strains carried
265	integrons, whereas greater than 16% of strains from other phylogenetic groups did. As
266	compared to other industrialized countries, the use of antibiotics in Korea is quite
267	extensive, with a defined daily dose (DDD) rate of 33.2 /1000 inhabitants/day. In
268	contrast, the DDD rate in OECD countries averaged 21.3 /1000 inhabitants/day (35).
269	Moreover, E. coli strains resistant to multiple antimicrobial substances are frequently
270	observed in Korea (4, 5, 36). Taken together, these factors may contribute to the absence
271	of phylogenetic group B2 strains among the Korean human populations we examined.
272	In addition to animals and humans, the phylogenetic distribution of
273	environmental E. coli isolates from the Yeongsan River, Jeonam province, Korea, was
274	also examined during the four seasons of an entire year. The Yeongsan River water
275	contained, on average, greater than 200 colony forming units (CFU) of E. coli per ml in
276	all seasons (data not shown). Results in Figure 2 show the seasonal variation in the
277	phylogenetic group distribution of E. coli strains in the Yeongsan River. Similar
278	distribution patterns were seen in November 2007 and May 2008 samples. A high
279	percentage of group B1 strains was found in both the November 2007 and May 2008
280	samples (45.8% and 54.2%, respectively), while a smaller percentage of strains were
281	shown to comprise phylogenetic groups A (25.0% and 33.3%, respectively) and D
282	(25.0% and 12.5%, respectively). In contrast, the February 2008 and August 2008
283	samples contained a high percentage of group A strains (87.5% and 83.3%, respectively).
284	In contrast to what was found with E. coli isolates from humans and domesticated

- 12 -

285

285	animals, E. coli strains in phylogenetic group B2 were detected in the November 2007
286	(4.2%) and August 2008 (8.3%) water samples. However, these strains were only
287	infrequently isolated. Results in Figure 1 also show that a greater percentage of E. coli
288	strains obtained from chickens, ducks, and swine were in phylogenetic group A,
289	whereas a high percentage of strains in group B1 were observed among E. coli obtained
290	from beef and dairy cattle and wild geese.
291	
292	Virulence gene distribution
293	The occurrence and distributional pattern of virulence genes among the
294	phylogenetic groups of unique E. coli isolates obtained from the various human and
295	animal hosts is shown in Table 2. Of the 659 unique strains and the 48 wild geese and
296	96 fresh water isolates examined, only 38 strains (4.7%) from healthy humans, human
297	patients, chickens, beef cattle, dairy cattle, and swine were found to contain virulence
298	genes. Approximately 20% of the beef cattle isolates in phylogenetic group B1 (17 of 84
200	straine) were found to correct vigulance gange and 16.7 and 12.5% of the straine were in

4 ere round to carry virulence genes, and 16.7 and 12.5% of the strains were in 299 phylogenetic groups D and A, respectively. The distribution of virulence genes in dairy 300 cattle had a different pattern than those from beef cattle. While 23.5% of dairy cattle 301 302 strain containing virulence genes were in phylogenetic group A (4 out of 17 strains), 303 15.2% of the strains were in group B1 (5 out of 33 strains). None of the dairy cattle 304 strains in phylogenetic group D contained virulence genes. Taken together, our results 305 indicated that the percentage of E. coli strains carrying virulence genes was unequally 306 distributed among sources, and depended both on host source and the prevalence of 307 strains in each phylogenetic group. For example, phylogenetic group B1 strains from

- 13 -

each host source generally had a great percentage of strains carrying virulence genes, and
 those in group D had a lesser number.

The greatest number of strains carrying virulence genes was found in phylogenetic group B1 strains obtained from beef cattle (15.7%), followed by group B1 strains from dairy cattle (9.4%). Ishii et al. (23) and Girardeau et al. (15) reported that Shiga-like toxin producing *E. coli* (STEC) strains segregated mainly into phylogenetic group B1. This is similar to the results we report here for isolates obtained from Jeonam Province, Korea. No strains from ducks or wild geese were found to contain virulence genes.

317 The distributional pattern of virulence genes tested in this study is shown in Figure 3. The *eaeA* (an attaching and effacing (A/E) protein, intimin, responsible for 318 pathogenicity) was detected less in phylogenetic group A strains than those in the other 319 320 groups (A: 0.34%, B1:3.68%, and D 2.08%), which is in agreement with results from a 321 previous report (15). The intimin protein has been shown to be important for 322 enterohemorrhagic infection of E. coli (1, 3, 19, 32, 33). The eaeA has also been used to 323 detect a chromosomally-localized pathogenicity island, referred to as the locus of 324 enterocyte effacement (LEE), and strains containing *eaeA* and lacking stx_1 and stx_2 are 325 referred to as enteropathogenic E. coli (EPEC) (21). In our studies, potential EPEC 326 strains were detected in 2.2, 4.7, and 2.8% of isolates from healthy humans, human patients, and beef cattle, respectively, while potential EHEC strains ($eaeA^+ stx^+$) were 327 328 detected in 4.7 and 1.9% of strains from beef and dairy cattle, respectively (Table 3). By 329 far, the greatest percentage of strains containing *eaeA*, hlyA, stx_1 and stx_2 belonged to 330 phylogenetic group B1 (Figure 3). Genes encoding for stx_1 and stx_2 were found in 2.5%

- 14 -

(18 out of 707) of the strains examined, and the greatest number of *E. coli* strains
carrying virulence genes were seen in the beef (18.9%; 20 out of 104 strains) and dairy
cattle (17.0%; 9 out of 53) isolates (Table 3). A similar percentages of STEC strains
were reported to be present among *E. coli* isolates obtained from cattle fecal material in
Germany (56) and Australia (7).

Box 236 Population structure of *E. coli* strains obtained from human and domesticated

337 animal hosts

338 The genetic relatedness of the unique E. coli strains containing virulence genes are 339 shown in Figure 4. Generally speaking, the strains could be divided into two major 340 groups (A and B) at the 45% similarity level. The group A strains could be further 341 subdivided into two subclusters, I and II. Subcluster II strains were further subdivided 342 into three subgroups (II.1, II.2, and II.3). The subgroup II.2 and II.3 strains were separated at the 63% similarity level and comprised 47% (18 out of 38) of the analyzed 343 344 strains. Regardless of host and virulence profiles, 47% of the strains (18 of 38) were 345 related to each other at the \geq 80% similarity level. Moreover, 22% (6 out of 27) of the phylogenetic group B1 strains were clustered at $a \ge 88\%$ similarity level. The majority 346 (71.1%) of strains carrying virulence genes belonged to phylogenetic group B1, and 347 71% (15 out of 21) of the cluster A, subgroup II strains were from beef cattle. 348

The patterns of virulence gene profiles were not uniformly distributed among the strains examined by HFERP analysis. For example, while strains aa18, ak70, and aa84 shared the same virulence gene profile (hlyA, stx_1 , and stx_2 positive) they were only distantly genetically related, at less than the 70% similarity level. It also should be noted that one phylogenetic group D strain carried all four virulence genes tested and

- 15 -

was not genetically related to any of the strains carrying similar virulence genes.

355	Multivariate analysis of variance (MANOVA) was used to determine if the
356	HFERP DNA fingerprint patterns of strains could be used to differentiate phylogenetic
357	groups. The percentage of strains correctly classified into each group was determined by
358	using Jackknife analysis (Table 4). Results in Figure 5 and Table 4 show that cluster
359	analysis separated the strains into three groups which did not correlated well with
360	phylogenetic groupings. Approximately 70 to 75% of group A and B1 strains were
361	correctly assigned to their respective phylogenetic groups, whereas about 20% of these
362	strains were misclassified. The phylogenetic group D strains showed the lowest
363	percentage of correct assignment (57.3%).

364

365 Conclusions

366 Six hundred and fifty-nine genomically-unique E. coli isolates obtained from 367 domesticated animals and humans were subjected to phylogenetic grouping analysis using multiplex PCR. Of the strains examined, 291, 272, and 96 isolates were assigned 368 to phylogenetic groups A, B1, and D, respectively. No group B2 strains were found 369 370 among E. coli isolated from feces of any of domesticated animals and humans from 371 Jeonam Province, Korea. However, strains in phylogenetic group B2 were found in the 372 isolates obtained from wild geese and Yeongsan River water. The clustering of strains by 373 HFERP DNA fingerprint analysis did not correlate well with phylogenetic group 374 designations made based on PCR analyses, and the method misclassified about 20% of 375 group A and B1 strains, and about 40% of group D strains. While it was also previously reported that BOX-PCR DNA fingerprinting may not be useful for differentiating 376

377 strains within E. coli phylogenetic groups (26), the method has proven to be useful for strain-level discrimination, to cluster genetically similar E. coli ecotypes, and to 378 differentiate sources and virotypes of E. coli (9, 23, 29). 379 The distribution of E. coli strains in the three phylogenetic groups varied depending on 380 the animal host from where the strains were obtained; beef and dairy cattle isolates 381 382 showed a relatively similar distributional pattern of phylogenetic groups, as did the duck 383 and chicken isolates. Our data also support previous suggestions that diet and antibiotic 384 usage may strongly influence the phylogenetic group distribution of E. coli strains (17, 18, 24, 51). Moreover, results from these studies indicate that the distribution of E. coli 385 386 strains in phylogenetic groups may be strongly influenced by geographical boundaries. 387 Therefore, further physiological and epidemiological studies are needed to clarify the 388 reason why phylogenetic group B2 strains are rare in South Korea. More virulence genes were found in the Korean phylogenetic group B1 strains 389 390 we examined than in strains from the other phylogenetic groups. This suggests that these

391 strains may either share a common ancestor, or are subjected to intensive horizontal gene 392 transfer and recombination events. The relatively frequent occurrence of *eaeA* positive 393 strains among beef cattle isolates suggests that further surveillance studies are required 394 in order to properly assess risk associated with *E. coli* from different animal sources in 395 Korea.

396 Acknowledgements

207	This study was suppo	orted in nort from a a	rant from the Korean N	Ministry of
591	This sluur was suppl	nicu, ili pari, nom a g		viiiiisu v oi
	2 11	, , , , , , , , , , , , , , , , , , , ,)	2

- 398 Environment as "The Eco-technopia 21 project" and by a grant from the Korean
- 399 Research Foundation funded by the Korean Government (MOEHRD) (Project No.
- 400 420035) to Tatsuya Unno. We thank Dr. Timothy Johnson for providing DNA of E. coli
- 401 strain carrying *ibeA*.

402 **References**

403	1.	Boerlin, P., S. Chen, J. K. Colbourne, R. Johnson, S. De Grandis, and C.
404		Gyles. 1998. Evolution of enterohemorrhagic Escherichia coli hemolysin
405		plasmids and the locus for enterocyte effacement in shiga toxin-producing E.
406		<i>coli</i> . Infect. Immun. 66: 2553-61.
407	2.	Boyd, E. F., and D. L. Hartl. 1998. Chromosomal regions specific to
408		pathogenic isolates of Escherichia coli have a phylogenetically clustered
409		distribution. J. Bacteriol. 180:1159-65.
410	3.	China, B., E. Jacquemin, A. C. Devrin, V. Pirson, and J. Mainil. 1999.
411		Heterogeneity of the eae genes in attaching/effacing Escherichia coli from
412		cattle: comparison with human strains. Res. Microbiol. 150:323-32.
413	4.	Choi, C., H. J. Ham, D. Kwon, J. Kim, D. S. Cheon, K. Min, W. S. Cho, H. K.
414		Chung, T. Jung, K. Jung, and C. Chae. 2002. Antimicrobial susceptibility of
415		pathogenic Escherichia coli isolated from pigs in Korea. J. Vet. Med. Sci.
416		64: 71-3.
417	5.	Chong, Y., and K. Lee. 2000. Present situation of antimicrobial resistance in
418		Korea. J. Infect. Chemother. 6:189-95.
419	6.	Clermont, O., S. Bonacorsi, and E. Bingen. 2000. Rapid and simple
420		determination of the Escherichia coli phylogenetic group. Appl. Environ.
421		Microbiol. 66:4555-8.
422	7.	Cobbold, R., and P. Desmarchelier. 2000. A longitudinal study of
423		Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian diary
424		herds. Vet. Microbiol. 71:125-37.
425	8.	Cocolin, L., M. Manzano, C. Cantoni, and G. Comi. 2000. A multiplex-PCR

426		method to detect enterohemorrhagic (EHEC) and enteropathogenic (EPEC)
427		Escherichia coli in artificially contaminated foods. Int J Hyg Environ Health
428		203: 159-64.
429	9.	Dombek, P. E., L. K. Johnson, S. T. Zimmerley, and M. J. Sadowsky. 2000.
430		Use of repetitive DNA sequences and the PCR To differentiate Escherichia coli
431		isolates from human and animal sources. Appl. Environ. Microbiol. 66:2572-7.
432	10.	Duriez, P., O. Clermont, S. Bonacorsi, E. Bingen, A. Chaventre, J. Elion, B.
433		Picard, and E. Denamur. 2001. Commensal Escherichia coli isolates are
434		phylogenetically distributed among geographically distinct human populations.
435		Microbiology 147: 1671-6.
436	11.	Escobar-Paramo, P., O. Clermont, A. B. Blanc-Potard, H. Bui, C. Le
437		Bouguenec, and E. Denamur. 2004. A specific genetic background is required
438		for acquisition and expression of virulence factors in <i>Escherichia coli</i> . Mol. Biol.
439		Evol. 21: 1085-94.
440	12.	Escobar-Paramo, P., K. Grenet, A. Le Menac'h, L. Rode, E. Salgado, C.
441		Amorin, S. Gouriou, B. Picard, M. C. Rahimy, A. Andremont, E. Denamur,
442		and R. Ruimy. 2004. Large-scale population structure of human commensal
443		Escherichia coli isolates. Appl. Environ. Microbiol. 70:5698-700.
444	13.	Fagan, P. K., M. A. Hornitzky, K. A. Bettelheim, and S. P. Djordjevic. 1999.
445		Detection of shiga-like toxin (stx1 and stx2), intimin (eaeA), and
446		enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in
447		animal feces by multiplex PCR. Appl. Environ. Microbiol. 65:868-72.
448	14.	Germon, P., Y. H. Chen, L. He, J. E. Blanco, A. Bree, C. Schouler, S. H.
449		Huang, and M. Moulin-Schouleur. 2005. ibeA, a virulence factor of avian

450		pathogenic Escherichia coli. Microbiology 151:1179-86.
451	15.	Girardeau, J. P., A. Dalmasso, Y. Bertin, C. Ducrot, S. Bord, V. Livrelli, C.
452		Vernozy-Rozand, and C. Martin. 2005. Association of virulence genotype with
453		phylogenetic background in comparison to different seropathotypes of Shiga
454		toxin-producing Escherichia coli isolates. J. Clin. Microbiol. 43:6098-107.
455	16.	Gordon, D. M., O. Clermont, H. Tolley, and E. Denamur. 2008. Assigning
456		Escherichia coli strains to phylogenetic groups: multi-locus sequence typing
457		versus the PCR triplex method. Environ. Microbiol. 10:2484-96.
458	17.	Gordon, D. M., and A. Cowling. 2003. The distribution and genetic structure of
459		Escherichia coli in Australian vertebrates: host and geographic effects.
460		Microbiology 149:3575-86.
461	18.	Gordon, D. M., S. E. Stern, and P. J. Collignon. 2005. Influence of the age and
462		sex of human hosts on the distribution of Escherichia coli ECOR groups and
463		virulence traits. Microbiology 151:15-23.
464	19.	Gyles, C., R. Johnson, A. Gao, K. Ziebell, D. Pierard, S. Aleksic, and P.
465		Boerlin. 1998. Association of enterohemorrhagic Escherichia coli hemolysin
466		with serotypes of shiga-like-toxin-producing Escherichia coli of human and
467		bovine origins. Appl. Environ. Microbiol. 64:4134-41.
468	20.	Herzer, P. J., S. Inouye, M. Inouye, and T. S. Whittam. 1990. Phylogenetic
469		distribution of branched RNA-linked multicopy single-stranded DNA among
470		natural isolates of Escherichia coli. J. Bacteriol. 172:6175-81.
471	21.	Hornitzky, M. A., K. Mercieca, K. A. Bettelheim, and S. P. Djordjevic. 2005.
472		Bovine feces from animals with gastrointestinal infections are a source of
473		serologically diverse atypical enteropathogenic Escherichia coli and Shiga

474		toxin-producing E. coli strains that commonly possess intimin. Appl. Environ.
475		Microbiol. 71: 3405-12.
476	22.	Ishii, S., W. B. Ksoll, R. E. Hicks, and M. J. Sadowsky. 2006. Presence and
477		growth of naturalized Escherichia coli in temperate soils from Lake Superior
478		watersheds. Appl. Environ. Microbiol. 72:612-21.
479	23.	Ishii, S., K. P. Meyer, and M. J. Sadowsky. 2007. Relationship between
480		phylogenetic groups, genotypic clusters, and virulence gene profiles of
481		Escherichia coli strains from diverse human and animal sources. Appl. Environ.
482		Microbiol. 73: 5703-10.
483	24.	Johnson, J. R., P. Goullet, B. Picard, S. L. Moseley, P. L. Roberts, and W. E.
484		Stamm. 1991. Association of carboxylesterase B electrophoretic pattern with
485		presence and expression of urovirulence factor determinants and antimicrobial
486		resistance among strains of Escherichia coli that cause urosepsis. Infect. Immun.
487		59: 2311-5.
488	25.	Johnson, J. R., and M. Kuskowski. 2000. Clonal origin, virulence factors, and
489		virulence. Infect. Immun. 68:424-5.
490	26.	Johnson, J. R., and T. T. O'Bryan. 2000. Improved repetitive-element PCR
491		fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups
492		within Escherichia coli. Clin Diagn Lab Immunol 7:265-73.
493	27.	Johnson, J. R., E. Oswald, T. T. O'Bryan, M. A. Kuskowski, and L.
494		Spanjaard. 2002. Phylogenetic distribution of virulence-associated genes
495		among Escherichia coli isolates associated with neonatal bacterial meningitis in
496		the Netherlands. J. Infect. Dis. 185:774-84.
497	28.	Johnson, J. R., and A. L. Stell. 2000. Extended virulence genotypes of

498		Escherichia coli strains from patients with urosepsis in relation to phylogeny
499		and host compromise. J. Infect. Dis. 181:261-72.
500	29.	Johnson, L. K., M. B. Brown, E. A. Carruthers, J. A. Ferguson, P. E.
501		Dombek, and M. J. Sadowsky. 2004. Sample size, library composition, and
502		genotypic diversity among natural populations of Escherichia coli from different
503		animals influence accuracy of determining sources of fecal pollution. Appl.
504		Environ. Microbiol. 70:4478-85.
505	30.	Kleanthous, H., H. R. Smith, S. M. Scotland, R. J. Gross, B. Rowe, C. M.
506		Taylor, and D. V. Milford. 1990. Haemolytic uraemic syndromes in the British
507		Isles, 1985-8: association with verocytotoxin producing <i>Escherichia coli</i> . Part 2:
508		Microbiological aspects. Arch. Dis. Child. 65:722-7.
509	31.	Korea-Food-and-Drug-Administration. 2003. Report on National
510		Antimicrobial Resistance Control. In S. Korea Food and Drug Administration,
511		Korea. (ed.).
512	32.	Kudva, I. T., K. Blanch, and C. J. Hovde. 1998. Analysis of Escherichia coli
513		O157:H7 survival in ovine or bovine manure and manure slurry. Appl. Environ.
514		Microbiol. 64: 3166-74.
515	33.	Kudva, I. T., P. G. Hatfield, and C. J. Hovde. 1997. Characterization of
516		Escherichia coli O157:H7 and other Shiga toxin-producing E. coli serotypes
517		isolated from sheep. J. Clin. Microbiol. 35:892-9.
518	34.	Le Gall, T., O. Clermont, S. Gouriou, B. Picard, X. Nassif, E. Denamur, and
519		O. Tenaillon. 2007. Extraintestinal virulence is a coincidental by-product of
520		commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol
521		24: 2373-84.

522	35.	Lee, E., J. Bae, and K. Park. 2000. Drug Use Evaluation. Seoul, Korea. Korea
523		Institute for Health and Social Affairs (in Korean).
524	36.	Lim, S. K., H. S. Lee, H. M. Nam, Y. S. Cho, J. M. Kim, S. W. Song, Y. H.
525		Park, and S. C. Jung. 2007. Antimicrobial resistance observed in Escherichia
526		coli strains isolated from fecal samples of cattle and pigs in Korea during
527		2003-2004. Int. J. Food Microbiol. 116:283-6.
528	37.	Moreno, E., I. Planells, G. Prats, A. M. Planes, G. Moreno, and A. Andreu.
529		2005. Comparative study of Escherichia coli virulence determinants in strains
530		causing urinary tract bacteremia versus strains causing pyelonephritis and other
531		sources of bacteremia. Diagn. Microbiol. Infect. Dis. 53:93-9.
532	38.	Nowrouzian, F. L., I. Adlerberth, and A. E. Wold. 2006. Enhanced persistence
533		in the colonic microbiota of Escherichia coli strains belonging to phylogenetic
534		group B2: role of virulence factors and adherence to colonic cells. Microbes
535		Infect. 8:834-40.
536	39.	Nowrouzian, F. L., A. E. Wold, and I. Adlerberth. 2005. Escherichia coli
537		strains belonging to phylogenetic group B2 have superior capacity to persist in
538		the intestinal microflora of infants. J. Infect. Dis. 191:1078-83.
539	40.	Obata-Yasuoka, M., W. Ba-Thein, T. Tsukamoto, H. Yoshikawa, and H.
540		Hayashi. 2002. Vaginal Escherichia coli share common virulence factor profiles,
541		serotypes and phylogeny with other extraintestinal E. coli. Microbiology
542		148: 2745-52.
543	41.	Ochman, H., and R. K. Selander. 1984. Standard reference strains of
544		Escherichia coli from natural populations. J. Bacteriol. 157:690-3.
545	42.	Orskov, F., and I. Orskov. 1992. Escherichia coli serotyping and disease in

546		man and animals. Can. J. Microbiol. 38:699-704.
547	43.	Ostroff, S. M., P. I. Tarr, M. A. Neill, J. H. Lewis, N. Hargrett-Bean, and J.
548		M. Kobayashi. 1989. Toxin genotypes and plasmid profiles as determinants of
549		systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis.
550		160: 994-8.
551	44.	Paton, A. W., and J. C. Paton. 1998. Detection and characterization of Shiga
552		toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA,
553		enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol.
554		36: 598-602.
555	45.	Picard, B., J. S. Garcia, S. Gouriou, P. Duriez, N. Brahimi, E. Bingen, J.
556		Elion, and E. Denamur. 1999. The link between phylogeny and virulence in
557		Escherichia coli extraintestinal infection. Infect Immun 67:546-53.
558	46.	Proulx, F., E. G. Seidman, and D. Karpman. 2001. Pathogenesis of Shiga
559		toxin-associated hemolytic uremic syndrome. Pediatr. Res. 50:163-71.
560	47.	Sambrook, J., and W. D. Russell. 2001. Molecular Cloning. A laboratory
561		manual. The third edition. Cold Spring Harbor Laboratory Press, Cold Spring
562		Harbor, New York.
563	48.	Selander, R. K., D. A. Caugant, H. Ochman, J. M. Musser, M. N. Gilmour,
564		and T. S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for
565		bacterial population genetics and systematics. Appl. Environ. Microbiol.
566		51: 873-84.
567	49.	Siegler, R. L., T. G. Obrig, T. J. Pysher, V. L. Tesh, N. D. Denkers, and F. B.
568		Taylor. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic
569		uremic syndrome. Pediatr. Nephrol. 18:92-6.

570	50.	Skurnik, D., D. Bonnet, C. Bernede-Bauduin, R. Michel, C. Guette, J. M.
571		Becker, C. Balaire, F. Chau, J. Mohler, V. Jarlier, J. P. Boutin, B. Moreau, D.
572		Guillemot, E. Denamur, A. Andremont, and R. Ruimy. 2008. Characteristics
573		of human intestinal Escherichia coli with changing environments. Environ.
574		Microbiol. 10: 2132-7.
575	51.	Skurnik, D., A. Le Menac'h, D. Zurakowski, D. Mazel, P. Courvalin, E.
576		Denamur, A. Andremont, and R. Ruimy. 2005. Integron-associated antibiotic
577		resistance and phylogenetic grouping of Escherichia coli isolates from healthy
578		subjects free of recent antibiotic exposure. Antimicrob. Agents Chemother.
579		49: 3062-5.
580	52.	U.S., E. P. A. 2002. Method 1603: Escherichia coli (E. coli) in water by
581		membrane filtration using membrane-thermo-tolerant Escherichia coli agar
582		(modified mTEC). EPA-821-R-02-023. Office of Water, Washington DC.
583	53.	Wang, G., C. G. Clark, and F. G. Rodgers. 2002. Detection in Escherichia coli
584		of the genes encoding the major virulence factors, the genes defining the
585		O157:H7 serotype, and components of the type 2 Shiga toxin family by
586		multiplex PCR. J. Clin. Microbiol. 40:3613-9.
587	54.	Watt, S., P. Lanotte, L. Mereghetti, M. Moulin-Schouleur, B. Picard, and R.
588		Quentin. 2003. Escherichia coli strains from pregnant women and neonates:
589		intraspecies genetic distribution and prevalence of virulence factors. J. Clin.
590		Microbiol. 41: 1929-35.
591	55.	Zhang, L., B. Foxman, and C. Marrs. 2002. Both urinary and rectal
592		Escherichia coli isolates are dominated by strains of phylogenetic group B2. J.
593		Clin. Microbiol. 40:3951-5.

594 56. Zschock, M., H. P. Hamann, B. Kloppert, and W. Wolter. 2000.

595Shiga-toxin-producing *Escherichia coli* in faeces of healthy dairy cows, sheep596and goats: prevalence and virulence properties. Lett. Appl. Microbiol. **31:**203-8.

598	Figure 1	Legends
-----	-----------------	---------

599

600	Figure 1.	. Distribution of	phyl	logenetic	groups	among E.	<i>coli</i> isolates	obtained	from
	<u> </u>			<u> </u>	<u> </u>	6			

- humans and domesticated animals: (\Box) group A; (\Box) group B1; (\bullet) group B2 and;
- 602 (⊠) group D.

603

- Figure 2. Seasonal variations in phylogenetic group distribution among E. coli obtained
- from the Yeongsan River, Jeonam province, Korea: (\Box) group A; (\Box) group B1; (\blacksquare)
- 606 group B2 and; (\boxtimes) group D.
- 607
- Figure 3. Distribution of virulence genes among phylogenetic groups of *E. coli* obtained from humans and domesticated animals: (\blacksquare) *eaeA*; (\square); *hlyA*(\square) *stx*₁; and (\square) *stx*₂.

- Figure 4. Genetic relatedness of *E. coli* strains possessing virulence genes. The
- 612 dendrogram was generated from HFERP DNA fingerprints using Pearson's
- 613 product-moment correlation coefficient and the unweighted-pair group method with
- 614 arithmetic means clustering method.
- 615
- Figure 5. Phylogenetic grouping analysis of HFERP DNA fingerprints using MANOVA:
- 617 group A (●);group B1 (●);group D (●). HFERP DNA fingerprints from *E. coli* strains
- obtained from animal and human sources were numerically converted to binary
- 619 band-matching character tables and analyzed by MANOVA accounting for the
- 620 covariance structure.

Source	No. of individual hosts sampled	No. of isolates	No. of unique strains
Human	122	442	141
Patient	16	83	21
Chicken	57	154	60
Duck	93	220	139
Beef Cattle	71	266	106
Dairy Cattle	38	194	53
Swine	117	226	139
Wild Geese	24	48	ND^1
Fresh water	4 times a year	96	ND

Table 1. Sources and numbers of *E. coli* isolates used in this study

622 ¹ND, not determined

Source	Phylogenetic group	No. of unique strains in phylogenetic groups	No. of unique strains with virulence genes	% unique strains with virulence genes isolated from each source	% unique strains with virulence genes in phylogenetic group
	А	42	0	0	0
Human	B1	48	2	1.4	4.2
	D	51	1	0.7	2.0
	А	5	0	0	0
Patient	B1	7	1	4.8	14.3
	D	9	0	0	0
	А	33	1	1.7	3.0
Chicken	B1	19	0	0	0
	D	8	0	0	0
	А	88	0	0	0
Duck	B1	33	0	0	0
	D	18	0	0	0
D (А	16	2	1.9	12.5
Beet	B1	84	17	15.7	20.2
cuttie	D	6	1	0.9	16.7
D :	А	17	4	7.6	23.5
Dairy cattle	B1	33	5	9.4	15.2
cutto	D	3	0	0	0
	А	90	2	1.4	2.2
Swine	B1	48	2	1.4	4.2
	D	1	0	0	0

623	Table 2. The occurrence	e of E. coli strains	with virulence genes	and phylogenetic groups
			U	

624

Table 3. Comparison of the virulence gene patterns in unique E. coli strains obtained from different human and domesticated animal

627	sources

	Virulence §	gene pattern		No. of unique strains with virulence gene pattern found in following sources:								
eaeA	hlyA	stx ₁	stx_2	Humans	Patients	Chickens	Ducks	Beef cattle	Dairy cattle	Swine	Wild Geese	No. strains with virulence gene profiles
+	+	+	+	0	0	0	0	1	0	0	0	1
+	+	+	-	0	0	0	0	2	0	0	0	2
+	+	-	-	0	0	0	0	1	1	0	0	2
+	-	+	-	0	0	0	0	1	0	0	0	1
+	-	-	-	3	1	0	0	3	0	0	0	7
-	+	+	+	0	0	0	0	3	0	0	0	3
-	+	-	-	0	0	1	0	1	8	1	0	11
-	+	-	+	0	0	0	0	5	0	0	0	5
-	-	+	-	0	0	0	0	1	0	1	0	2
-	-	-	+	0	0	0	0	2	0	2	0	4
-	-	-	-	138	20	59	139	84	44	135	48	667
	No. unique	strains teste	d	141	21	60	139	104	53	139	48 ^a	705
No. strai	ins from eac ge	h host with nes	virulence	3	1	1	0	20	9	4	0	

628 ^aClonal isolates not removed

630 fingerprint and Jackknife analyses

6	21	
0	υı	

Assigned	Percent E. coli isolates in assigned group:				
phylogenetic group	А	B1	D		
А	73.2	18.4	22.9		
B1	19.2	75.7	19.8		
D	7.6	5.9	57.3		

632

Figure 1 634

637

638 Figure 2

649 Figure 3.

661 Figure 4

670 Figure 5

671

673			
674			
675			
676			